For best experience please turn on javascript and use a modern browser!
You are using a browser that is no longer supported by Microsoft. Please upgrade your browser. The site may not present itself correctly if you continue browsing.



In today’s online environments, such as social media platforms and e-commerce websites, consumers are overloaded with information and firms are competing for their attention. Most of the data on these platforms comes in the form of text, images, or other unstructured data sources. It is important to understand which information on company websites and social media platforms are enticing and/or likeable by consumers. The impact of online visual content, in particular, remains largely unknown.

Finding the drivers behind likes and clicks can help (1) understand how consumers interact with the information that is presented to them and (2) leverage this knowledge to improve marketing content. The main goal of this dissertation is to learn more about why consumers like and click on visual content online. To reach this goal visual analytics are used for automatic extraction of relevant information from visual content. This information can then be related, at scale, to consumer and their decisions.