 Birbil, İ., Martin, Ö., Onay, G., & Öztoprak, F. (2024). Bolstering stochastic gradient descent with model building. TOP, 32(3), 517-536. https://doi.org/10.1007/s11750-024-00673-z [details]
Birbil, İ., Martin, Ö., Onay, G., & Öztoprak, F. (2024). Bolstering stochastic gradient descent with model building. TOP, 32(3), 517-536. https://doi.org/10.1007/s11750-024-00673-z [details] Maragno, D., Buti, G., Birbil, S. I., Liao, Z., Bortfeld, T., den Hertog, D., & Ajdari, A. (2024). Embedding machine learning based toxicity models within radiotherapy treatment plan optimization. Physics in Medicine and Biology, 69(7), Article 075003. https://doi.org/10.1088/1361-6560/ad2d7e [details]
Maragno, D., Buti, G., Birbil, S. I., Liao, Z., Bortfeld, T., den Hertog, D., & Ajdari, A. (2024). Embedding machine learning based toxicity models within radiotherapy treatment plan optimization. Physics in Medicine and Biology, 69(7), Article 075003. https://doi.org/10.1088/1361-6560/ad2d7e [details] Maragno, D., Kurtz, J., Röber, T. E., Goedhart, R., Birbil, Ş. İ., & den Hertog, D. (2024). Finding regions of counterfactual explanations via robust optimization. INFORMS Journal on Computing, 36(5), 1316–1334. https://doi.org/10.1287/ijoc.2023.0153 [details]
Maragno, D., Kurtz, J., Röber, T. E., Goedhart, R., Birbil, Ş. İ., & den Hertog, D. (2024). Finding regions of counterfactual explanations via robust optimization. INFORMS Journal on Computing, 36(5), 1316–1334. https://doi.org/10.1287/ijoc.2023.0153 [details] Vogels, L., Mohammadi, R., Schoonhoven, M., & Birbil, S. I. (2024). Bayesian Structure Learning in Undirected Gaussian Graphical Models: Literature Review with Empirical Comparison. Journal of the American Statistical Association, 119(548), 3164-3182. https://doi.org/10.1080/01621459.2024.2395504 [details]
Vogels, L., Mohammadi, R., Schoonhoven, M., & Birbil, S. I. (2024). Bayesian Structure Learning in Undirected Gaussian Graphical Models: Literature Review with Empirical Comparison. Journal of the American Statistical Association, 119(548), 3164-3182. https://doi.org/10.1080/01621459.2024.2395504 [details] von Stackelberg, P., Goedhart, R., Birbil, S. I., & Does, R. J. M. M. (2024). Comparison of threshold tuning methods for predictive monitoring. Quality and Reliability Engineering International, 40(1), 499-512. https://doi.org/10.1002/qre.3436 [details]
von Stackelberg, P., Goedhart, R., Birbil, S. I., & Does, R. J. M. M. (2024). Comparison of threshold tuning methods for predictive monitoring. Quality and Reliability Engineering International, 40(1), 499-512. https://doi.org/10.1002/qre.3436 [details] Cina, G., Röber, T. E., Goedhart, R., & Birbil, S. I. (2023). Semantic match: Debugging feature attribution methods in XAI for healthcare. Proceedings of Machine Learning Research, 209, 182-191. https://proceedings.mlr.press/v209/cina23a.html [details]
Cina, G., Röber, T. E., Goedhart, R., & Birbil, S. I. (2023). Semantic match: Debugging feature attribution methods in XAI for healthcare. Proceedings of Machine Learning Research, 209, 182-191. https://proceedings.mlr.press/v209/cina23a.html [details] Karaca, U., Birbil, S. I., Aydin, N., & Mullaoğlu, G. (2023). Masking Primal and Dual Models for Data Privacy in Network Revenue Management. European Journal of Operational Research, 308(2), 818-831. https://doi.org/10.1016/j.ejor.2022.11.025 [details]
Karaca, U., Birbil, S. I., Aydin, N., & Mullaoğlu, G. (2023). Masking Primal and Dual Models for Data Privacy in Network Revenue Management. European Journal of Operational Research, 308(2), 818-831. https://doi.org/10.1016/j.ejor.2022.11.025 [details] Dekker, R., Koot, P., Birbil, S. I., & van Embden Andres, M. (2022). Co-designing Algorithms for Governance: Ensuring Responsible and Accountable Algorithmic Management of Refugee Camp Supplies. Big Data & Society, 9(1), 1-15. https://doi.org/10.1177/20539517221087855 [details]
Dekker, R., Koot, P., Birbil, S. I., & van Embden Andres, M. (2022). Co-designing Algorithms for Governance: Ensuring Responsible and Accountable Algorithmic Management of Refugee Camp Supplies. Big Data & Society, 9(1), 1-15. https://doi.org/10.1177/20539517221087855 [details] Maragno, D., Röber, T. E., & Birbil, S. İ. (2022). Counterfactual Explanations Using Optimization With Constraint Learning. In OPT2022: Optimization for Machine Learning. Accepted papers OPT-ML. https://doi.org/10.48550/arXiv.2209.10997 [details]
Maragno, D., Röber, T. E., & Birbil, S. İ. (2022). Counterfactual Explanations Using Optimization With Constraint Learning. In OPT2022: Optimization for Machine Learning. Accepted papers OPT-ML. https://doi.org/10.48550/arXiv.2209.10997 [details] Cina, G., Röber, T., Goedhart, R., & Birbil, I. (2022). Why we do need Explainable AI for Healthcare. (v1 ed.) ArXiv. https://doi.org/10.48550/arXiv.2206.15363 [details]
Cina, G., Röber, T., Goedhart, R., & Birbil, I. (2022). Why we do need Explainable AI for Healthcare. (v1 ed.) ArXiv. https://doi.org/10.48550/arXiv.2206.15363 [details]